- 2023年8月7日
- 2023年10月29日
マナビDX Quest2023への参加記録 ①申し込みから開会式まで
2023年度の「マナビDX Quest」に参加することにしました。 マナビDX Questというのは、経済産業省が開設したデジタル人材育成のためのプログラムです。実践的なケーススタディや地域企業との協働を通じて、デジタル技術の活用やDX推進の考え方を […]
2023年度の「マナビDX Quest」に参加することにしました。 マナビDX Questというのは、経済産業省が開設したデジタル人材育成のためのプログラムです。実践的なケーススタディや地域企業との協働を通じて、デジタル技術の活用やDX推進の考え方を […]
SIGNATEの学習コースQuest「スポーツのチケット価格の最適化」の総仕上げとして、コンペの練習問題「Jリーグの観客動員数予測」に取り組みました。 回帰モデルの作成手順をまとめたこちらの記事に沿って作業を進めましたので、適宜ご参照ください。 コン […]
この記事では、機械学習の回帰モデル作成の基本的な流れを解説します。対象データの理解から始め、特徴量の選択、モデルの作成と学習、そしてモデルの評価まで、一連のステップを具体的なコード例とともに説明します。この記事に沿って進めれば、回帰モデルを作成し、評 […]
機械学習モデルの評価は、モデルの性能を理解し改善するために不可欠なプロセスです。Pythonの機械学習ライブラリであるscikit-learnは、モデルの評価を行うための便利な関数を提供しています。この記事では、scikit-learnを使用して機械 […]
教師なし学習は、データの構造やパターンを探索するための手法でトレーニングデータのラベルを必要としません。この記事ではPythonのScikit-learnライブラリを用いて、教師なし学習の三つの手法である主成分分析(PCA)、K-Meansクラスタリ […]
機械学習モデルの開発では、モデルの訓練と評価を適切に行うためにデータの分割が必要となります。この記事では、機械学習モデルの評価に使用される主要なデータ分割手法について、具体的なコード例とともに解説します。 train_test_splitによる学習デ […]
はじめに 機械学習の世界では、データの前処理は成功の鍵となる重要なステップです。前処理が適切に行われていないと、どんなに優れたアルゴリズムを用いても、モデルの性能は大きく低下します。今回の記事では、Pythonのライブラリであるscikit-lear […]
PythonのライブラリであるScikit-learnは、機械学習の実装を簡単に行うことができる強力なツールです。この記事では、Scikit-learnを使用して教師あり学習を実装する方法をステップバイステップで解説します。 scikit-learn […]
scikit-learnはPythonの機械学習ライブラリの一つで、その中にはDataset-APIという便利な機能が含まれています。このAPIを活用することで、機械学習アルゴリズムを試験的に使ってみる際に必要なテストデータセットを簡単に取得すること […]
はじめに 今日のビジネス環境では、データサイエンスが企業の価格戦略を形成する上で重要な役割を果たしています。その一例がダイナミックプライシングです。この記事では、ダイナミックプライシングの基本と、それを実現するための重要なツールであるブッキングカーブ […]